UDC 004.8, 004.94

Tsiutsiura Mykola

Kyiv National University of Construction and Architecture, Kyiv DScTech (Eng.), Docent, Professor of the Information Technologies Department

Dolhopolov Serhii

Kyiv National University of Construction and Architecture, Kyiv Student of the 3rd year

SOFTWARE ENGINEERING OF CONTROL AND MEASURING DEVICE ELEMENTS USING AI

To represent data in the neural network of the control and measuring device, tensors of 2-5 ranks are used, the understanding of which allows us to perform calculations in the future. A tensor is a data container that is almost always assigned to numbers [1, p. 5].

1) A Matrix (Rank 2 Tensor) or a two-dimensional tensor is an array of vectors. The Matrix has two axes (often called rows and columns). The Matrix can be represented as a rectangular table with numbers. In the example of the NumPy library Matrix:

```
>>> x = np.array([[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2],
[8, 81, 5, 37, 3]])
>>> x.ndim
2
```

Elements on the first axis are called rows, and on the second – columns. In the example [7, 80, 4, 36, 2] — this is the second row of the Matrix X, and [79, 80, 81] is its second column.

2) tensors of the 3rd and highest ranks. If we complete such matrices into a new array, we get a three-dimensional tensor, which can be represented as a numeric Cube. As an example of a three-dimensional tensor in NumPy:

```
>>> x = np.array([[[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2],
[8, 81, 5, 37, 3]],
[[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2],
[8, 81, 5, 37, 3]],
[[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2],
[8, 81, 5, 37, 3]]])
>>> x.ndim
3
```

Combining a three-dimensional tensor into an array can create a fourdimensional tensor, and so on.

References

1. Pattanayak S. (2017). Pro Deep Learning with TensorFlow. - Apress-412 P.