KYIV NATIONAL UNIVERSITY OF CONSTRUCTION AND ARCHITECTURE Doctor of Philosophycecurer Department of Labor Protection and Environment «CONFRM» Dean of the Faculty of Engineering Systems and Ecology /O.V.Prymak / June 2020 year

SYLLABUS

of disciplines of normative special training «SUSTAINABLE TECHNOLOGIES AND CERTIFICATION OF GREEN BUILDING IN THE CONDITIONS OF CLIMATE CHANGE» · · · · · ·

code	The name of specialty	
101	Ecology	
	the name of the educational program	
	Ecology	

Developer (s): Tkachenko T.M., doc.t.s., professor (surname and initials, scientific degree, rank)

Kryvomaz T.I., doc.t.s., professor

(surname and initials, scientific degree, rank)

(surname and initials, scientific degree, rank)

(surname and initials, scientific degree, rank)

(signature)

signature

(signature)

(signature)

Syllabus was approved at a meeting of the Department of Occupational Safety and Environment

Protocol № 7 of «03» of June 2020 Head of Department

(signature)

(Voloshkina O.S.). (surname and initials)

Approved by the scientific-methodical commission of the specialty 101 «Ecology»

Protocol № 2 of «03» June 2020 Head of SMK

(sumame and initials)

Tkachenko T.M.

(signature

	master	Forn	n of st	udy: c	day, ev	vening	5				Mark	of		
code			The number of hours ^					-		approval				
	Name of specialty (specialization)	lits per semest	mest	mest		classi	room				trol			
			er se	including			Independent work	con	r					
			tal	gener	L	Lw	Pw		m of	neste				
		Cred	Tot	ln ۽					For	Ser				
101	Ecology	4,0	120				80	40	E	3				

EXCERPT FROM THE CURRICULUM 2020-2021

Course structure

Module, name	lecturer	Number of hours per	Numbe	r of hours
		module	Practical training	Independent work
Module 1. Sustainable	doc.t.s., prof. Tkachenko	60	40	20
technologies of «green»	Tetyana Mykolayivna			
construction in conditions of				
climate change				
Module 2. Certification in	doc.t.s., prof. Kryvomaz	60	40	20
«green» construction	Tetyana Ivanivna			

1. General information about the course

Course title	Balanced nature management					
Field of knowledge,	10 «Natural Sciences»					
code and	101 «Ecology»					
name of specialty						
Semester	3					
Normative/	Normative (OK 7)					
selective						
Lecturer	Tkachenko Tetyana Mykolayivna, doc.tech. sciences,					
	Professor of the Department of Labor Protection and					
	Environment					
	Kryvomaz Tetyana Ivanivna, doc.tech. sciences,					
	Professor of the Department of Labor Protection and					
	Environment					
Teacher profiles	http://www.knuba.edu.ua/?page_id=34148					
	Tkachenko Tetyana Mykolayivna					
	http://www.knuba.edu.ua/?page_id=53176					
Teacher profiles	http://www.knuba.edu.ua/?page_id=38568					
	Kryvomaz Tetyana Ivanivna					
	http://www.knuba.edu.ua/?page_id=38568					
Contact phone	Tkachenko T.M.:+38 (044) 241-54-15;					
E-mail Tkachenko	tkachenkoknuba@gmail.com;					
T.M.:	tkachenko.tm@knuba.edu.ua					
E-mail Kryvomaz T.I.	ecol@i.ua					
Course page	KNUBA educational site					
	http://org2.knuba.edu.ua					
	https://teams.microsoft.com/l/team/19%3af26e3c77253					
	d410381/cb/ccbd505336%40thread.tacv2/conversation					
	s?group1d=0d934d1c-16d6-46b2-9cc2-					
	6f45288598fa&tenantId=53accf99-0147-476b-a787-					
	42337aeb7273					
Consultations	Face-to-face consultations					
Kryvomaz T.I.	Kryvomaz T. I.: every Monday, 15:20-16.40, classroom					
	250 a.					
	Remote consultations					
	ecol@i.ua, Telegram; Zoom, TEAMS (Monday,					
	Thursday, 17-19.00)					
Consultations	Face-to-face consultations					
Tkacenko T.M.	Tkachenko T.M.: every Tuesday, 15:20-16.40,					
	classroom 250 a.					
	<i>Remote consultations:</i>					
	tkachenkoknuba(a)gmail.com; Viber, Telegram:					
	06/35338//; Zoom					

https://teams.microsoft.com/l/team/19%3af26e3c7725
3d4103817cb7ccbd505336%40thread.tacv2/conversati
ons?groupId=0d934d1c-16d6-46b2-9cc2-
6f45288598fa&tenantId=53accf99-0147-476b-a787-
42337aeb7273 (Tuesday, Friday, 12-14.00)

2. Course abstract

The course «Sustainable technologies and certification of green building in climate change» consists of two different modules taught by different lecturers:

Module 1. «Sustainable technologies of «green» construction in the conditions of climate change» (lecturer: doctor of technical sciences, Professor: *Tkachenko Tetyana Mykolayivna*)

Module 2. «Certification systems and criteria for green building»

(lecturer: doctor of technical sciences Sciences, Professor: Kryvomaz Tetyana Ivanivna)

Module 1. «Sustainable technologies of «green» construction in the context of climate change»

Today, the using of «green» technologies in «green» construction is considered, including the standpoint of providing climate services at the local and global levels. The module addresses a wide range of issues related to the using of «green» structures to improve the environmental safety of urbocenoses within the concept of "green" construction: classification problems, place and role of «green» structures in the system of sustainable urban development and «green» construction; the role of «green» structures in increased biocapacity and CO_2 sequestration; mathematical modeling of phytocenosis development; thermal characteristics of the plant layer on the «green» structures; methodology for determining the thermal resistance and «cooling effect» of the plant layer; assessment of indirect reduction of CO_2 emissions due to the «cooling effect»; types and designs of modern «green» roofs; construction and implementation in the domestic construction market and in EU countries; modern and original methods of calculation; regulatory framework.

3. The purpose and tasks of the course

The purpose of the discipline is to obtain new professional competencies and program learning outcomes on the provision of climate services through the introduction of sustainable structures of «green» construction that are necessary for the implementation and design of their own research in the form of a dissertation.

Tasks of the discipline:

- to study the problem of classification of «green» structures;
- to determine the place and role of «green» structures in the system of sustainable urban development and «green» construction;
- to determine the role of «green» structures in increased biocapacity and CO₂ sequestration;
- to study and learn to apply the method of forecasting and evaluation of CO₂ sequestration by biomass of «green» structures;
- to study the concept of «cooling effect» of plants;
- to learn how to explore the phenological features of artificial phytocenoses of «green structures» and how to develop mathematical models of their development depending on the species set of plants, climatic and weather conditions of the region;
- to study the methodology for determining the thermal resistance and «cooling effect» of the plant layer, as well as the assessment of indirect reduction of CO₂ emissions due to the «cooling effect»;
- to study the main types of engineering systems of «green» structures.

4. Competences of searchers formed as a result of mastering the course

Ability to solve complex problems in the field of								
ecology, environmental protection and sustainable use								
of nature in the implementation of research and								
innovation, which involves a deep rethinking of								
existing and creation of new holistic knowledge,								
mastering the methodology of scientific and scientific-								
pedagogical activities, conducting independent								
research have scientific novelty, theoretical and								
practical significance.								
GC01. An ability to abstract thinking, analysis and								
synthesis.								
GC02. An ability to communicate in the state language								
both orally and in writing.								
GC03. An ability to communicate in a foreign								
language.								
GC04. An ability to conduct research at the								
appropriate level.								
GC05. An ability to search, processing and analyze								
information from various sources.								
GC06 . An ability to identify, pose and solve problems.								
GC07. An ability to work in an international context.								
GC08. An ability to work autonomously.								

	GC09. An ability to develop and manage projects.
Professional	PC01. An ability to assimilate concepts, theoretical
competences	and practical problems, history of development and
	current state of scientific knowledge in the field of
	ecology, environmental protection and optimization of
	nature.
	PC03. An ability to present the results of their own
	scientific and scientific and technical activities,
	including scientific publications.
	PC04. An ability to convey to students modern
	knowledge and scientific results of their own research,
	including in the framework of scientific and
	pedagogical activities in the field of natural sciences.
	PC05 . An ability to intellectual creative activity aimed
	at obtaining new knowledge and (or) finding ways to
	apply them in the field of ecology, environmental
	protection and optimization of nature.
	Competences defined by the university
	PC06. An ability to predict and assess the impact of
	climate change on natural and artificial ecosystems and
	biota
	PC07. An ability to predict, plan and study the
	possibilities of reducing man-made impact on people
	and the environment by «green building» methods
Program learning	PR03 To plan and implement in practice an original
results	independent scientific research, which is characterized
	by novelty, theoretical and practical value and
	contributes to the solution of significant ecological
	problems, environmental protection and sustainable
	use of nature.
	PR04 Formulate, research and solve problems of
	ecology, environmental protection and sustainable
	using of nature by the scientific method of cognition.
	PR05 Independently develop innovative
	comprehensive research projects in the field of
	ecology, environmental protection and optimization of
	nature management.
	PR06 Apply methods of mathematical and
	geoinformation analysis and modeling of the current
	state and forecasting changes in ecosystems and their
	components.
	PR07 Independently use modern equipment for
	research in the field of ecology, environmental
	protection and sustainable using of nature.

5. Course program according to the content module 1 «Sustainable technologies of «green» construction in the conditions of climate change»

The module consists of practical classes (40 hours) and independent work (20 hours). Practical classes take place in the form of online trainings under the UN Program for Reconstruction and Peacebuilding in conjunction with employers (according to the Memorandum of January 29, 2020). At the end of the training, graduate students receive certificates. Online training courses are also posted on the website of the Department of Occupational Safety and Environment KNUBA http://www.knuba.edu.ua/?page_id=87051, in the online group of graduate students Teams:

https://teams.microsoft.com/l/team/19%3af26e3c77253d4103817cb7ccbd505336% 40thread.tacv2/conversations?groupId=0d934d1c-16d6-46b2-9cc2-

6f45288598fa&tenantId=53accf99-0147-476b-a787-42337aeb7273

At the end of the practical classes 4 hours are devoted to the demonstration of scientific presentation, developed by every graduate student. After the

demonstration of each presentation there is a discussion and consideration with an overall result on a 100-point grading system.

The name of the topic of practical exercises	Number
	of hours
1. Problems of classification of «green» constructions	2
2. Urbanization as a process of increasing the ecological danger of	2
cities	
3. Videoecology	2
4. Natural and man-made danger of urbacenosis. Creating a sustainable anthropogenic landscape.	2
5. The assessment of the impact of construction objects on the environment	2
6. «Unhealthy building syndrome» as a direct threat to health	2
7. Natural «green technologies» as a way of improving the microclimate of the premises	2
8. "Green building". The concept of origin. Perspectives for the development of «green building» in Ukraine.	2
9. The role of «green» structures in reducing the ecological footprint of urbocenoses	2
10. The using of «green structures» for regulation rainwater runoff	2
11. Roof landscaping as a perspective energy-efficient ecological technology of urbocenoses	2
12. The history of roof landscaping	2
13. Synergistic combination of «green structures» and alternative energy sources	2
14. Rain gardens	2
15. Vertical landscaping	2
16. Landscaping of slopes	2
17. Ecoparkings	2
18. Facade «green» blocks	2
19. Preparing a presentation on your own research. Discussion. Results.	4
Total number	40

Independent work of graduate students takes place on the basis of the research center of ZinCo at the address: Lobanovsky Avenue, 72, 4th floor. Website https://www.rooftophub.com.ua/ (within the framework of the cooperation agreement between KNUBA and ZinCo, 2019). At a time convenient for both

participants in the educational process, graduate students independently visit ZINCO ROOFTOP HUB, where on the basis of logistics of employers study the issues covered by the program. If graduate students have additional questions, they receive the necessary expert advice provided by the SNP. At the end of the study of questions in the framework of independent work, ZinCo specialists conduct an interview with graduate students. Based on the results of the interview, grades are set according to a 100-point grading system.

Topics of questions for self-study	Number of hours	
1. Research of phytocenoses of «green» roofs	2	
2. System solutions for pitched «green» roofs	2	
3. System solutions for intensive «green» roofs	2	
4. System solutions for extensive «green» roofs	2	
5. Systems for pitched «green» roofs	2	
6. Safety on «green» roofs	2	
7. Pedestrian paths and highways on roofs and underground garages	2	
8. Software	2	
9. Consultations of specialists	2	
10. Interview with ZinCo specialists. Evaluation.		
Total number of hours	20	

The general assessment system according to Module 1 of the special course consists of three assessments: for practical classes (result - presentation, 40 points) and independent work (result - interview; 30 points). At the end of the module there is a final test (30 points).

6. Evaluation criteria

Evaluation criteria are presented on the KNUCA website, in the Regulations about the organization of the KNUCA educational process (item 5 Organization of control and quality of education): <u>http://www.knuba.edu.ua/ukr/wp-content/uploads/2020/11/polozhennia-pro-orhanizatsiiu-navchalnoho-protsesu.pdf</u>

		Score due to the national scale				
The sum of points for all types of educational activities	ECTS assessment	for exam, course project (work), practice	for an offset			
90-100	Α	perfectly				
82-89	В	good				

Assessment scale: national and ECTS

74-81	С		credited
64-73	D	satisfactorily	
60-63	Ε		
		unsatisfactory with the	not credited with
35-59	FX	possibility of re-	the possibility of
		passing	re-passing
		unsatisfactorily with	not credited with
0-34	F	compulsory re-study	compulsory re-
		of the discipline	study of the
			discipline

Methods of control and evaluation of postgraduate students' knowledge according to Module 1 «Sustainable technologies of «green construction» in the conditions of climate change»

			0	
Distribution of	points for the	discipline with	the form of exa	am control

Current eva			
Practical training	Independent work	Final test (exam)	Sum
40	30	30	100

7.Logistics of the discipline

Laptop, multimedia equipment. Online classes are held by the use of Zoom . To study micro

For independent work: logistics ZINCO ROOFTOP HUB: a real "green" roof, demonstration materials, etc.

8. Course policy («rules of the game»)

KNUBA has developed and operates Regulations of events to support academic integrity: http://www.knuba.edu.ua/ukr/wp-content/uploads/2015/09/ .pdf During the course, this «Regulation» is performed:

- The course includes practical classes and independent work.
- The atmosphere in online or offline audience is friendly, creative, open to constructive criticism.
- Mastering the discipline involves the mandatory implementation of the plan of practical and independent classes.
- Independent work includes the study of issues based on logistics of employers ZINCO ROOFTOP HUB. Independent work involves a final conversation with specialists, which affects the overall assessment of

the course.

- If the applicant is absent for a serious reason, he presents the completed tasks during self-training and teacher consultation.
- Academic integrity should not be violated during the work on tasks: when the applicant uses Internet resources and other sources of information, he must indicate the source used during the task. If the fact of plagiarism is detected, he receives 0 points for the task.

Methodical support

Basic:

1. Tkachenko T.M. Scientific and methodological bases of increasing the level of ecological safety of urbocenoses by creating energy efficient technologies of "green" construction. - Abstract of the dissertation for the acquisition of sciences. degree of doctor of technical sciences. - K .: TOV «Yuston», 2018. - 40 p.

2. Hasnutdinova A.I. Technology of vertical landscaping / A.I. Hasnutdinova, O.P.Alexandrova, A.N. Novik // Construction of unique buildings and structures - 12 (51), 2016. - P.20-32.

3. Tkachenko T. N. Energy efficiency of green technologies in modern urbocenoses / T. N. Tkachenko, I. Christ, Y. V. Polevaya // Scientific and technical collection "Energy efficiency in construction and architecture». – Issue 8. - K.: KHYEA, 2016. - P. 387-392.

4. Tkachenko T. N. Perspectives of "green" construction and alternative forms of landscaping in Ukraine / T.N. Tkachenko, V.A. Mileykovsky, V.G. Dzyubenko // Urban planning and spatial planning: Nauk.- tehn. Collection / Answer. ed. MM Osetrin. - Kyiv, KNUBA, 2016. - Issue. 60. - P. 324-334.

5. Tkachenko T. M. Green roofs as a resource of rainwater in the modern urbocenosis // Problems of water supply, drainage and hydraulics: Scientific and technical collection. Issue 27. - Kyiv: KNUBA, 2016. - P.364-369.

6. Tkachenko T. M. Research of heat transfer in energy-efficient green roofs / T.M. Tkachenko, V.O. Mileykovsky // Ventilation, lighting and heat and gas supply: scientific and technical collection. - Vip. 21. - Kyiv: KNUBA, 2017. - P. 37-48.

7. Tkachenko T. M. Green constructions in the concept of sustainable development of modern cities / T.M. Tkachenko, V.O. Mileykovsky // Sb. scientific tr. GVUZ «PGASA»: Construction, materials science, mechanical engineering. Series: Creation of high-tech eco-complexes in Ukraine on the basis of the concept of balanced (sustainable) development. - Dnipro: GVUZ «PGASA», 2017. - P. 179-186.

8. Tkachenko T. Mathematical model of extensive green roof with a steep type of phytocenosis // Ecological safety and nature management. - N_{2} 1 (25). -

Kyiv: KNUCA, 2018. – P.94-102.

9. Tkachenko T.M. Creation of energy efficient «green construction» in conditions of moderately continental climate // Ecological safety and nature management. - $N_{2} 2 (26)$. – Kyiv: KNUCA, 2018. – P.77 -84.

10. Tkachenko T.M. Problems of classification and using of "green structures" in the greening of modern cities // Ecological sciences: scientific and practical journal. - № 1 (20). - Vol.2. - K .: DEA, 2018. - P. 21-24.

11. Tkachenko T.M. Green structures as an effective way to stabilize and improve the environment of urban coenoses (on the example of Solomyansky district of Kyiv) / T.M. Tkachenko, D.V. Guley // Ecological safety and balanced resource using: Ivano-Frankivsk , 2018. - P.46-56.

12. Tkachenko T.M. Full-scale studies of the «cooling effect» of vertical landscaping of buildings // Ventilation, lighting and heat and gas supply. - Vip. 25. - Kyiv: KNUBA, 2018. - P. 44-49.

13. Voloshkina O.S. Convective model of emission emission on the highway overpass under normal weather conditions / O.S. Voloshkina, V.V. Trofimovich, I.V. Klimova, R.V. Sipakov, T.M. Tkachenko // Ventilation, lighting and heat and gas supply. - Vip. 27. - Kyiv: KNUBA, 2018. - P. 23-31.

14. Tkachenko T. Investigation of the influence of grass cover on soil temperature for roof landscaping / T. Tkachenko, V. Mileykovsky // Budownictwo o zoptymalizowanym Potencjale energetycznym. Construction of optimized energy. - 1 (19). - Poland, 2017. - P. 67-72. (Copernicus Index)

15. Tkachenko T. Research of cooling effect of vegetation layer of green structures in construction / T. Tkachenko, V. Mileikovskyi // International Scientific and Practical conference «World science». – N_{2} 7 (23), Vol. 1, 2017. – P. 22-24. (Index Copernicus, Google Scholar)

16. Tkachenko TN Experience of creating green roofs in Ukraine // Proceedings of the International Scientific Conference «Topical problems of modern science» (June 16, 2017, Warsaw, Poland). - Vol. 4. - P. 23-27. (European database <u>https://www.academia.edu</u>)

17. Tkachenko T. Geometric Basis of the Use of «Green Constructions» for Sun Protection of Glazing / T. Tkachenko, V. Mileikovskyi // ICGG 2018 -Proceedings of the 18th International Conference on Geometry and Graphics. -Milan, Italy, August 3-7, 2018. – pp. 1096-1107. (Scopus)

18. Tkachenko T. Energy Efficiency of «Green Structures» in Cooling Period / T. Tkachenko // International Journal of Engineering & Technology. - 7 (3.2) (2018). – P. 453-457 (Scopus)

19. Tkachenko T. «Green structures» as a technical means of stabilization and improvement of the environmental state // Scientific letters of academic society

of Michal Baludansky. – № 6. – 2B., 2018. – P. 88-90.

20.Fabbri Kristian, Barbieri Fabrizio, Merli Francescaю Using natural fibre insulators on green roofs: some considerations. E3S Web of Conferences. 2020;197:02015 DOI 10.1051/e3sconf/202019702015

21. Rachel Gioannini, Malik Al-Ajlouni, Richard Kile, Dawn VanLeeuwen, Rolston St. Hilaire. Plant Communities Suitable for Green Roofs in Arid Regions. Sustainability. 2018;10(6):1755 DOI 10.3390/su10061755

22. Youcan Feng, Steven J. Burian, Eric R. Pardyjak. Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain- Scarce Environment. Water. 2018;10(3):262 DOI 10.3390/w10030262

23. Carlos Vicente Rey, Natalia Franco, Gwendolyn Peyre, Juan Pablo Rodríguez. Green Roof Design with Engineered Extensive Substrates and Native Species to Evaluate Stormwater Runoff and Plant Establishment in a Neotropical Mountain Climate. Sustainability. 2020;12(6534):6534 DOI 10.3390/su12166534

24. Jiajun Zeng, Guoru Huang, Haiwan Luo, Yepeng Mai, Haichun Wu. First flush of non-point source pollution and hydrological effects of LID in a Guangzhou community. Scientific Reports. 2019;9(1):1-10 DOI 10.1038/s41598-019-50467-8

25. Haoming Chen, Jinyi Ma, Xinjun Wang , Pingping Xu, Shuo Zheng, Yanwen Zhao. Effects of Biochar and Sludge on Carbon Storage of Urban Green Roofs. Forests. 2018;9(7):413 DOI 10.3390/f9070413

26. Alexandra R. Rempel, Alan W. Rempel Intrinsic Evaporative Cooling by Hygroscopic Earth Materials. Geosciences. 2016;6(3):38 DOI 10.3390/geosciences6030038

27. Yaping Chen, Bohong Zheng, Yinze Hu. Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China. Sustainability. 2020;12(2752):2752 DOI 10.3390/su12072752

28. Aman S. Gill, Kai Purnell, Matthew I. Palmer, Jaime Stein, Krista L. McGuire. Microbial Composition and Functional Diversity Differ Across Urban Green Infrastructure Types. Frontiers in Microbiology. 2020;11 DOI 10.3389/fmicb.2020.00912

29. Virginia A. Gallipoliti. Technologies according to design as didactic experiences in complementary facilities. Arquitecno. 2019;0(13):55-61 DOI 10.30972/arq.0134162

Additional:

1. Vertical gardens of Patrick Blanc. - [Electronic resource]. - Access mode: https://econet.ru/articles/64106-vertikalnye-sady-patrika-blanka. - Access date: 24.09.2017.

2. Alaeva NA The main directions of greening of buildings. - [Electronic

resource]. - Access mode: http://edu.secna.ru/publication/5/release/108/. - Access date: 25.09.2017

3. Vertigreen® - vertical landscaping system for indoor and outdoor use. - [Electronic resource]. - Access mode: http://zinco.com.ua/system/vertigreen/. - Access date: 25.09.2017.

4. Onishchenko L. Green roofs. Part II. History of appearance. - [Electronic resource]. - Access mode: http://o-p-i.ru/promyshlennoe-proektirovanie/14-staticheskie-stranitsy/proektirovanie/stati-i-publikatsii/961-zelenye-krovli-chast-ii-istoriya-poyavleniya.html. - Access date: 27.09.2017.

Information resources

1. http://library.knuba.edu.ua/

2. http://chitalnya.nung.edu.ua/node/5444

3. https://nenc.gov.ua/?page_id=128

4. Website of the Ministry of Environment: national reports on the state of the environment

environment, monitoring programs, etc. : http://www.menr.gov.ua/ 5. Website of the Information and Analytical Center (IAC) of the Ministry of Environment: https://iacmenr.rgdata.com.ua/ShowPage.aspx?PageID=200 6. Site of the Ukrainian hydrometeorological center http://meteo.com.ua/

7. Website of the Ministry of Emergencies of Ukraine http://www.mns.gov.ua/opinfo/4689.html

8. Interactive web system for monitoring European river basins

European Environment Agency (maps of water monitoring networks,

etc.): http://www.eea.europa.eu/themens/water/mapviewers/myRBD 9. Google Maps - sets of satellite and vector maps with

attributive content, informational and photographic materials:

http://maps.google.com/

10.NASAObservationData:http://earthobservatory.nasa.gov/11.Data about the state of the environment in Europe - EAS:www.eea.europa.eu/

12. Databases on air condition of the European thematic center of EANS:

http://air-climate.eionet.europa.ua/databases/#ag

13. Catalog of remote sensing data of the State Enterprise «Nature» of the Ministry of Environment and NSAU for the whole

territory of Ukraine: http://www.pryroda.gov.ua:8080/katalog/search_film.do

14. Examples of remote sensing data: http://www.nkau.gov.ua/nsau/photo.nsf/ photoU!

opoen & collapse = all

15. Remote sensing data from many satellites: http://search.kosmosnimki.ru/

16. Examples of the using of GIS technologies - the site of the company «Date +» (RF):

www.dataplus.ru, including the catalog of cartographic resources of the world: www.dataplus.ru/win/Catalog

17. Information about GIS products «ArcGIS» in Ukraine (official dealer's website ESRI (USA) – «ESOMMSo», Ukraine): www.ecomm.kiev.ua
18. Information on application examples and GIS products «Panorama»

(Russian Federation): www.gisinfo.ru and their dealer in Ukraine: http://www.panorama.vn.ua

19. Information about GIS «Digitals» (site of SPE «Geosystem», Ukraine): www.vingeo.com

20. Information about GIS «VNetGIS» and interactive maps of regions and cities Of Ukraine www.uamap.net

21. Information on application examples, GIS products «Mapinfo» and interactive maps of the regions of Ukraine: the site of the official dealer in Ukraine: http://www.isgeo.com.ua

Module 2. «Green building certification systems and criteria»

An integrated approach of green building provides rational land use, saving natural resources and energy, water efficiency, reducing pollution and harmful emissions, high quality environment, safety and comfort, innovation and continuous improvement at all stages of construction projects. The module addresses issues related to the application of international systems of green building certification and ways of their practical implementation in the construction industry of Ukraine. The module is based on the principles of international standards for green building Establishment Environmental BREEAM (Building Research Assessment Methodology), LEED (Leadership in Energy and Environmental Design), DGNB Gesellschaft für Nachhaltiges Bauen), (Deutsche HOE (Haute Oualité Environnementale system) and others. The module includes generalized criteria for green building: 1) project management; 2) health and safety; 3) land use and ecology; 4) transport and infrastructure; 5) energy efficiency; 6) sustainable resource use; 7) water efficiency; 8) air quality; 9) waste management. The methodology of life cycle assessment (LCA) of construction projects and materials is unified according to the International Organization for Standardization ISO 14040-14043.

3. The purpose and tasks of the course

The purpose of the course is to obtain new practical competencies in the

application of green building standards and criteria at all stages of planning and implementation of construction projects for using in the process of personal research and dissertation work.

Tasks of the course:

- to assess the impact of buildings on the environment across their entire life cycle, from masterplanning, design, new construction, in-use, reconstruction to refurbishment;
- to study international green building certification systems BREEAM, LEED, DGNB, HQE, etc.;
- to analyze the main criteria of green building: project management, health and safety, land use and ecology, transport and infrastructure, energy efficiency, sustainable resource use, water efficiency, air quality, waste management;
- to compare of Ukrainian environmental construction laws and regulations with international green building certification and find the way to implement green building in Ukraine;
- to learn of of life cycle assessment for construction projects and materials according to different methodologies of environmental impacts calculation at all stages;
- to develop of individual proposals for the introduction of green building standards in the construction industry of Ukraine.

Integral	Ability to solve complex problems in the field of		
Competence (IC)	ecology, environmental protection and sustainable use		
	of nature in the implementation of research and		
	innovation, which involves a deep rethinking of		
	existing and creation of new holistic knowledge.		
	mastering the methodology of scientific and scientific-		
	pedagogical activities, conducting independent		
	research have scientific novelty, theoretical and		
	practical significance.		
General	GC01. An ability to abstract thinking, analysis and		
competences	synthesis.		
	GC02. An ability to communicate in the state language		
	both orally and in writing.		
	GC03. An ability to communicate in a foreign		
	language.		
	GC04. An ability to conduct research at the		
	appropriate level.		
	GC05. An ability to search, processing and analyze		

4. Competences of searchers formed as a result of mastering the course

	information from various sources.			
	GC06. An ability to identify, pose and solve problems.			
	GC07. An ability to work in an international context.			
	GC08. An ability to work autonomously.			
	GC09. An ability to develop and manage projects.			
Professional	PC01 . An ability to assimilate concepts, theoretical			
competences	and practical problems history of development and			
competences	current state of scientific knowledge in the field of			
	ecology anyironmental protection and optimization of			
	ecology, environmental protection and optimization of			
	PC03. An ability to present the results of their own			
	scientific and scientific and technical activities,			
	including scientific publications.			
	PC04. An ability to convey to students modern			
	knowledge and scientific results of their own research,			
	including in the framework of scientific and			
	pedagogical activities in the field of natural sciences.			
	PC05 . An ability to intellectual creative activity aimed			
	at obtaining new knowledge and (or) finding ways to			
	apply them in the field of ecology environmental			
	apply them in the field of ecology, environmental protection and optimization of nature			
	protection and optimization of nature.			
	PC06 An ability to predict and assess the impact of			
	PC06. An ability to predict and assess the impact of			
	climate change on natural and artificial ecosystems and			
	PC07. An ability to predict, plan and study the			
	possibilities of reducing man-made impact on people			
	and the environment by «green building» methods			
Program learning	PR03 To plan and implement in practice an original			
results	independent scientific research, which is characterized			
	by novelty, theoretical and practical value and			
	contributes to the solution of significant ecological			
	problems, environmental protection and sustainable			
	use of nature.			
	PR04 Formulate research and solve problems of			
	ecology environmental protection and sustainable			
	using of nature by the scientific method of cognition			
	PD05 Independently develop innovative			
	appropriate in the field of			
	comprehensive research projects in the field of			
	ecology, environmental protection and optimization of			
	nature management.			
	PR06 Apply methods of mathematical and			
	geoinformation analysis and modeling of the current			
	state and forecasting changes in ecosystems and their			

c	components.
I	PR07 Independently use modern equipment for
r	research in the field of ecology, environmental
l f	protection and sustainable using of nature.
I	PR08 Communicate, including in a foreign language,
i	n a dialogue with the general scientific community
a	and the public in the field of ecology, environmental
r	protection and nature optimization.
I	PR09 Communicate clearly and unambiguously
F	professional knowledge, the results of own research,
j	ustifications and conclusions both orally and in
V	writing for different audiences, both nationally and
i	nternationally.
I	PR10 Apply modern technologies (including
i	nformation) in scientific and scientific-pedagogical
a	and ecological-educational activities.
I	PR11 Demonstrate leadership qualities, responsibility
a	and full autonomy in the implementation of complex
r	research projects.
I	PR12 Implement the intellectual property right to the
r	results of scientific and scientific-technical activities
v	within the framework of scientific ethics.
1	Program learning outcomes determined by the
L	iniversity
I	PR13. Develop recommendations, measures, standards
a	and other regulations in the field of climate services
a	and environmental improvement
1	PR14. Independently use modern methods and
t	echnologies of green building to improve air quality
а	and the condition of urbocenoses and agrocoenoses.

5. Course program for module 2 «Green building certification systems and criteria»

The module consists of practical classes (40 hours) and home work (20 hours). Practical classes take the form of online workshops, after which graduate students receive certificates. Methodical support of the module is posted on the website of the Department of Occupational and Environmental Safety KNUBA. Upon completion of practical classes 4 hours are allocated for the presentation of their own research on the selected topic within the program of the module. The presentation demonstration ends with the communication in discussion groups.

The topic of practical classes	Number
	of hours
1. The impact of the construction industry to the environment and	2
human health	
2. Life cycle assessment in construction	2
3. International green building certification systems	2
4. Basic criteria and aspects of green building	2
5. Concept, masterplanning and management of the construction	2
project	
6. Land use and environmental impact assessment	2
7. Infrastructure of construction project	2
8. Quality, comfort, health and safety of the built environment	2
9. Energy efficiency and sustainable resource use	2
10. Minimization of environmental pollution	2
11. Waste management	2
12. Environmental assessment of building materials	2
13. Biophilic design	2
14. Economic green building justification	2
15. International green building laws and regulations	2
16. Ukrainian environmental laws and regulations for building	2
17. Examples of green buildings in Ukraine	2
18. Problems of green building implementation in Ukraine	2
19. Preparation of the individual research presentation. Discussion.	
Results.	
Total	40

Independent work of graduate students takes place on the basis of enterprises and research institutions by prior arrangement on an individual basis. In case of additional questions, graduate students receive appropriate expert advice. As a result of independent work, graduate students perform an individual task that must be presented and defended in public. Additional points are awarded for conference presentations, scientific publications and participation in the project.

The topic of individual work	Number of hours
1. Certification green building schemes BREEAM	2
2. LEED green building standards	2
3. DGNB green building standards	2

4. International green building organizations working with an	2
innovative technologies	
5. Examples of life cycle assessment for building materials	2
6. Internet resources about green building	2
7. Examples of green building projects in different countries around	2
the world	
8. Proposals for the introduction of green building standards in	2
Ukraine	
9. Individual work defense	4
Total	20

The general assessment system according to Module 1 of the special course consists of three assessments: for practical classes (result - presentation, 40 points) and independent work (result - interview; 30 points). At the end of the module there is a final test (30 points).

6. Evaluation criteria

Evaluation criteria are presented on the KNUCA website, in the Regulations about the organization of the KNUCA educational process (item 5 Organization of education): http://www.knuba.edu.ua/ukr/wpcontrol and quality of content/uploads/2020/11/polozhennia-pro-orhanizatsiiu-navchalnoho-protsesu.pdf

Assessment scale: national and ECTS					
		Score due to the nationa	ll scale		
The sum of points for all types of educational activities	ECTS assessment	for exam, course project (work), practice	for an offset		
90-100	Α	perfectly			
82-89	В	good			
74-81	С		credited		
64-73	D	satisfactorily			
60-63	Ε				
35-59	FX	unsatisfactory with the possibility of re- passing	not credited with the possibility of re-passing		
0-34	F	unsatisfactorily with compulsory re-study of the discipline	not credited with compulsory re- study of the discipline		

. .

Methods of control and evaluation of postgraduate students knowledge according to Module 2 «Green building certification systems and

•	4	•
OPI	tor	" 10 \\
		1011

Distribution of points for the discipline with the form of exam control				
Current eva				
Practical training	g Independent work (exam)		Sum	
40	30	30	100	

7. Logistics of the discipline

Laptop, multimedia equipment. Laboratory equipment for the building microclimate, quality criteria and comfort of buildings studies is available in lab.74 of the central building of KNUCA. The Zoom and TEAMS platforms use for online lessons. The exchange of information and communication is carried out in the Telegram.

8. Course policy

KNUBA has developed and operates Regulations of events to support academic integrity: http://www.knuba.edu.ua/ukr/wp-content/uploads/2015/09/ .pdf During the course, this «Regulation» is performed:

- The course includes practical classes and independent work.
- The atmosphere in online or offline audience is friendly, creative, open to constructive criticism.
- Mastering the discipline involves the mandatory implementation of the plan of practical and independent classes.
- Independent work includes investigation and information research, exchange of information with other students of the course, involves the final individual task and its public defense, presentation on conferences and preparation of scientific publications.
- If the applicant is absent for a serious reason, he presents the completed tasks during self-training and teacher consultation.
- Academic integrity should not be violated during the work on tasks: when the applicant uses Internet resources and other sources of information, he must indicate the source used during the task. If the fact of plagiarism is detected, he receives 0 points for the task.

Methodical support Basic:

1. Kryvomaz T., Varavin D. Improving the level of environmental safety in the process of the ecoenergoefficient reconstruction of the housing stock in Kiev // USEFUL online journal. -2017. -1(2) - P.19-29.

2. Kryvomaz T.I., Michaud A., Varavin D.V., Perebynos A.R. French green building rating systems // Environmental safety and nature use. -2018. -Vol. 27, $N \ge 3$. -P. 40-48.

3. Kryvomaz T.I., Scudu I., Leonard D., Minter D. Green building BREEAM in Ukraine / Environmental safety and nature use. – 2019. - Vol. 1 (29). - C. 5-15.

4. Kryvomaz T., Varavin D. Applying of green building standards for implementation of the city development strategies in Kyiv // USEFUL online journal. 2019. - vol. 3, no. 1 - P.16-30.

5. Proceedings of the First International Scientific and Practical Conference "Green Building". - Kyiv: KNUCA, November 12-13, 2019.

6. Kryvomaz T.I., Karpenko N.S. Green standards to improve office operations in the new environment // Environmental safety and nature use. -2020. - 34(2) - P.5-21.

7. Kryvomaz T., Varavin D. The ways to increase the environmental safety of the urban environment in connection with the pandemic COVID-19 // Environmental safety and nature use. -2020. -36 - P.41-55.

8. Kryvomaz T., Chmielewska J., Kanashchuk T. The prospects of green building developing in ukraine on example of Poland // Environmental safety and nature use. – 2020. - 36 - P.20-31.

9. Kryvomaz T. Estimation of influence of ventilation systems on microbiological safety and microclimatic conditions of premises / Т.І. Кривомаз, Д.В. Varavin, RV Sipakov, RS Kuzmishina // Ventilation, lighting and heat and gas supply. – 2020. – Vol. 34. – P. 24- 32.

Additional:

10. BREEAM Communities for developments at the neighbourhood scale or larger

11. BREEAM International New Construction for new-build domestic and nondomestic buildings

12. BREEAM In-Use for existing non-domestic buildings in-use

13. BREEAM International Refurbishment for non-domestic building fit-outs and refurbishments.

Information resources

14. Agence de la transition écologique (ADEME). - https://www.ademe.fr.

15. BRE Academy. - <u>https://www.bre.ac.</u>

16. BRE Global. - <u>https://www.bregroup.com/about-us/bre-global/</u>

17. BRE Trust. - https://bregroup.com/bretrust/

18. Building Research Establishment (BRE) – <u>https://www.bregroup.com/</u>

19. Building Research Establishment Environmental Assessment Method (BREEAM) – https://www.breeam.com.

20. CEEQUAL - <u>http://www.ceequal.com/</u>

21. Eco-Management and Audit Scheme (EMAS). – www.ec.europa.eu/environment/emas/index_en.htm.

22. Écoresponsable au bureau. Actions efficaces et bonnes résolutions. https://www.ademe.fr/sites/default/files/assets/documents/guide-pratiqueecoresponsable-au-bureau.pdf

23. Green book live www.greenbooklive.com

24. La Semaine Européenne de la Réduction des Déchets (SERD) https://www.serd.ademe.fr.

25. Le label des PME qui s'engagent pour l'environnement (EnVol) www.envolentreprise.fr.

26. On the following you can find a list a list of BREEAM documents that should help you understand BREEAM value and

benefits:https://www.breeam.com/discover/resources/.

27. Plan de Déplacements Entreprise www.ademe.fr/sites/default/files/assets/documents/ademe affiches pde.pdf.

28. The Leadership in Energy & Environmental Design (LEED) https://www.usgbc.org/leed.

29. Wiki Green building

https://www.designingbuildings.co.uk/wiki/Green_building

30. World Green Building Council (WGBC) http://www.worldgbc.org/what-green-building.